Modeling Distributions in Computer Vision

Haoqiang Fan fhq@megvii.com

About me

Joined Megvii (Face++) since 2012

Today's topic

How to **neurally** process an unordered set?

Generation

Evaluation

Example: 3D Deep Learning

Say we want to learn a "point cloud"

Crux: neural networks training needs an order!

Comparison of representations

The volumetric method:

f(input) -> array of size S*S*S

issue of efficiency: only O(S*S) "interesting" cells

Hard to scale to high dim.

Comparison of representations

The point-based method

f(input) -> array of (x,y,z) triples

fixed length v.s. variable length (e.g. RNN)

need to deal with permutation

Comparison of representations

Continuous version:

volumetric $f(input, x, y, z) \rightarrow p$ "energy" "discriminator" issue: how to sample? point-based f(input, r) - (x,y,z) "decoder" "generator"

issue: how to estimate density?

Application: single image 3D reconstruction

Given one RGB image, predict the whole 3D shape of the designated object.

Point-cloud based representation

CVPR 2017 (oral)

Input

Reconstructed 3D point cloud

Training by synthetic data

Network structure

image in, 1024 * 3 out

Network structure

image in, 1024 * 3 out

Network structure

image in, 1024 * 3 out

Result: Synthetic Data

Comparison: previous state-of-the-art

3D-R2N2 A Unified Approach for Single and Multi-view 3D Object Reconstruction Christopher et. al.

Comparison to previous work

category	Ours	3D-R2N2		
	1 view	1 view	3 views	5 views
plane	0.601	0.513	0.549	0.561
bench	0.550	0.421	0.502	0.527
cabinet	0.771	0.716	0.763	0.772
car	0.831	0.798	0.829	0.836
chair	0.544	0.466	0.533	0.550
monitor	0.552	0.468	0.545	0.565
lamp	0.462	0.381	0.415	0.421
speaker	0.737	0.662	0.708	0.717
firearm	0.604	0.544	0.593	0.600
couch	0.708	0.628	0.690	0.706
table	0.606	0.513	0.564	0.580
cellphone	0.749	0.661	0.732	0.754
watercraft	0.611	0.513	0.596	0.610
mean	0.640	0.560	0.617	0.631

Result: Real Data

What does the network learn?

a neural ordering of the points!

How to compare two point distributions?

Need to be differentiable and permutation invariant.

Hausdorff Distance:

 $d_{\text{HD}}(S_1, S_2) = \max\{\max_{x_i \in S_1} \min_{y_j \in S_2} \|x_i - y_j\|, \max_{y_j \in S_2} \min_{x_i \in S_1} \|x_i - y_j\|\}$

problem: slow to optimize

Symmetric Chamfer Distance:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

problem: unmatched density

Earth Mover Distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

problem: slower to compute

The "mean shape" behavior

Choice of loss function affects prediction

The "mean shape" behavior

The crux: the output minimizes the distance to all "unresolvable" shapes

due to inherent ambiguity of single view, or limited network capacity.

symmetric chamfer distance

The "mean shape" behavior

The crux: the output minimizes the distance to all "unresolvable" shapes

due to inherent ambiguity of single view, or limited network capacity.

earth mover distance

Synthetic experiment

How to model uncertainty?

Distribution of distribution

The second distribution: point-based, earth mover distance.

The first distribution: ??

Distributional modeling methods

VAE

?GAN

The problem of GAN

We need a discriminator that takes input from target domain.

This is sometimes non-trivial: how to neurally process a point set?

The problem of GAN

deep symmetric functions

Streaming algorithms

Say if you want to count the number of distinct elements in a set.

Process one item at a time, only constant working memory.

Solution: $1/\min(h(x) \text{ for } x \text{ in } X)$

h: X -> [0,1] a random hash function

What if we do not want to use GAN

We can "encourage" the network to spread its points:

min(loss(label,f(input,r1)),loss(label,f(input,r2)))

Simpler solution?

More on distributional modeling

GAN in practice

Training by generated data?

Problem:

Training by generated data?

Face⁺⁺ 旷视

What if we remove the identity preserving loss?

Then it may not preserve identity!

Solution 1: adversarial loss in pre-processing stage

Solution 2: GAN based data augmentation

Solution 2: GAN based data augmentation

Conclusion

Modeling a distribution: metric between distributions

How you measure the distance influences what you learn.

Career@megvii.com

