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Today's topic
How to neurally process an unordered set?

Generation

Evaluation
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Example: 3D Deep Learning

Say we want to learn a “point cloud”

Crux: neural networks training needs an order!
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Comparison of representations

The volumetric method:
f(input) -> array of size S*S*S

issue of efficiency: only O(S*S)
“interesting” cells

Hard to scale to high dim.
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Comparison of representations

The point-based method
f(input) -> array of (x,y,z) triples
fixed length v.s. variable length (e.g. RNN)

need to deal with permutation
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Comparison of representations

Continuous version:
volumetric  f(input, X, y, z) -=> p “energy” “discriminator”
issue: how to sample?

th 1]

point-based f(input, r) -. (x,y,z) “‘decoder” “generator”

issue: how to estimate density?
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Application: single image 3D reconstruction

Given one RGB image, predict
the whole 3D shape of the
designated object.

Point-cloud based representation

CVPR 2017 (oral)

Input Reconstructed 3D point cloud
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Training by synthetic data
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Network structure

image in, 1024 * 3 out
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Network structure

image in, 1024 * 3 out
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Network structure

image in, 1024 * 3 out
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Result: Synthetic Data
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Comparison: previous state-of-the-art

3D-R2N2 A Unified Approach for Single and Multi-view 3D Object Reconstruction Christopher et. al.
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Comparison to previous work
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Result: Real Data
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What does the network learn?

a neural ordering of the points!

deconv branch
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Loss function

How to compare two point distributions?

Need to be differentiable and permutation invariant.
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Loss function

Hausdorff Distance;
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problem: slow to optimize
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Loss function

Symmetric Chamfer Distance:
dop(S1,52) = Y min |z —y|3 + 3 minlo —y|3

w€S1 yESa2

problem: unmatched density
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Loss function

Earth Mover Distance
dgmp(S1,82) = min_ Y [lz — ¢()]2
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problem: slower to compute
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The “mean shape” behavior

Choice of loss function affects prediction

Input Chamfer EMD
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The “mean shape” behavior

The crux: the output minimizes the distance to all “unresolvable” shapes

due to inherent ambiguity of single view, or limited network capacity.

symmetric chamfer distance
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The “mean shape” behavior

The crux: the output minimizes the distance to all “unresolvable” shapes

due to inherent ambiguity of single view, or limited network capacity.

earth mover distance
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Synthetic experiment
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How to model uncertainty?

Distribution of distribution

The second distribution: point-based, earth mover distance.

The first distribution: ??
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Distributional modeling methods

VAE

?GAN
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The problem of GAN

We need a discriminator that takes input from target domain.

This is sometimes non-trivial: how to neurally process a point set?
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The problem of GAN

deep symmetric functions

Classification Network
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Facet* Bﬁ*ﬂl PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Hao et. al.



Streaming algorithms

Say if you want to count the number of distinct elements in a set.

Process one item at a time, only constant working memory.

Solution:  1/min(h(x) for x in X)

h: X->[0,1 arandom hash function
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What if we do not want to use GAN

We can “encourage” the network to spread its points:

min(loss(label,f(input,r1)),loss(label,f(input,r2)))
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Simpler solution?
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More on distributional modeling

GAN in practice
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Can we use GAN to improve face recognition?

Training by generated data?

Synthesized
Query

Reference Face
Recognition
Network

Query Face

Discriminator
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Can we use GAN to improve face recognition?

Training by generated data?

Problem:
Discrimination is no easier than
Synthesized recognition.
Query
Reference Face
Recognition
Network
Query Face
Discriminator
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Can we use GAN to improve face recognition?

What if we remove the identity preserving loss?

,.h'-;.m
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Can we use GAN to improve face recognition?

Then it may not preserve identity!
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Can we use GAN to improve face recognition?

Solution 1: adversarial loss in pre-processing stage

Discriminator Network Recognition via Generation

R e
Two-Pathway
Generator

-v verlflcatlon

Beyond Face Rotation Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis  Rui et. al.
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Can we use GAN to improve face recognition?

Solution 2: GAN based data augmentation
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Can we use GAN to improve face recognition?

Solution 2: GAN based data augmentation
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Conclusion

Modeling a distribution: metric between distributions

How you measure the distance influences what you learn.
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